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Abstract— We consider distributed parameter systems where
the underlying dynamics are spatially periodic on the real
line. We examine the problem of exponential stability, namely
whether the semigroup eAt decays exponentially in time. It
is known that for distributed systems the condition that the
spectrum of A belongs to the open left-half plane is, in
general, not sufficient for exponential stability. Those systems
for which this condition is sufficient are said to satisfy the
Spectrum Determined Growth Condition (SDGC). In this work
we separateA into a spatially invariant operator and a spatially
periodic operator. We find conditions for the spatially invariant
part to satisfy the SDGC. We then show that the SDGC remains
satisfied under the addition of the spatially periodic operator, if
this operator is small enough relative to the spatially invariant
one. A similar method is used to derive conditions which
guarantee that A has left-half plane spectrum, and thus the
system is exponentially stable. The results are demonstrated
through simple illustrative examples.

I. I NTRODUCTION

In all engineering applications, the temporal stability of
a system is of central importance. In linear systems theory,
assessing exponential stability is of particular interest. For
finite-dimensional systems (systems with finite-dimensional
state-space), exponential decay of‖eAt‖ is guaranteed if the
spectrum of theA-matrix lies inside the open left-half of the
complex plane (open LHP).

The situation is much more complicated in the case of
infinite-dimensional systems. For example, it is possible that
the spectrum of theA-operator of such a system lies inside
the open LHP, and yet‖eAt‖ actually grows exponentially
[1]–[3]. In such cases it is said that thespectrum-determined
growth conditionis not satisfied [3].

Yet there exists quite a wide range of infinite-dimensional
systems for which the spectrum-determined growth condition
is satisfied. These include (but are not limited to) systems for
which theA-operator issectorial(also known as an operator
which generates aholomorphicor analytic semigroup) [4]–
[6] or is aReisz-spectraloperator [7]. In this paper we focus
on sectorial operators.

Thus to establish exponential stability of a system, one
line of attack would be to show simultaneously that (i)A is
sectorialand(ii) the spectrum ofA lies in the open LHP. But
this still does not make the problem trivial. In fact proving
that an infinite-dimensional operator is sectorial, and then
finding its spectrum, can in general be extremely difficult.
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In this paper we will be dealing with a class ofspatially
periodic systems on the real line. These are systems for
which the system-operatorsA, B, andC are spatially pe-
riodic [8] (i.e., they commute only with spatial translations
of size equal to some real scalarX > 0 called the period). We
consider theA-operator as the sum of a spatially invariant
[9] operatorAo and a spatially periodic operatorεE, where
ε is a complex scalar. Our aim is to find conditions under
which this system is exponentially stable.

To show (i) and (ii) we take an indirect route. We first
find conditions on the spatially invariant operatorAo such
that (i) and (ii) are satisfied. We then show that (i) and (ii)
will remain satisfied if the spatially periodic operatorE is
“weaker” thanAo in a sense that we describe and ifε is small
enough. The reason for this indirect approach is that (i) and
(ii) are much easier to check for a spatially invariant operator
than they are for a spatially periodic one. All conditions we
derive are in the Fourier domain and can be checkedpoint-
wise in the spatial-frequency variablek ∈ R.

Our presentation is organized as follows. We briefly review
the frequency representation of spatially periodic operators
in Section II. We describe the problem set up in Section III.
Section IV deals with general notions of the spectrum and
sectorial operators. Section V contains the main contributions
of the paper and is divided into two parts; the first part deals
with condition (i) described above, and the second part with
condition (ii). Conclusions and future directions are given in
Section VI. Most proofs and technical material are relegated
to the Appendix at the end of the paper.

Notation: We use k ∈ R to characterize the spatial-
frequency variable, also known as thewave-number. Σ(T ) is
the spectrum of the operatorT , andΣp(T ) its point spectrum,
and ρ(T ) its resolvent set. To avoid clutter, we do not
index norms on different function/operator spaces. We use
‖ · ‖ to denote both function and (induced) operator norms
on infinite-dimensional spaces, and the Euclidean norm for
finite-dimensional vectors and matrices; the difference will
be clear from the context.C− denotes the open left-half of
the complex plane, andj :=

√
−1. S is the closure of the

set S ⊂ C. We may use the same notation for a spatially
invariant operator and its Fourier symbol.

II. PRELIMINARIES

In this section we briefly discuss the frequency domain
representation of spatially periodic operators. For a detailed
account the reader is referred to [8] and [10].

Let û(k) and ŷ(k) denote the Fourier transforms of two
spatial functionsu(x) andy(x) respectively. Ifu andy are
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Fig. 1. The frequency kernel representation of a spatially periodic operator
G.

related by a linear operatory = Gu, we have

y(x) =
∫

R
G(x, χ)u(χ) dχ

Fxl (1)

ŷ(k) =
∫

R
Ĝ(k, κ) û(κ) dκ

whereG andĜ arekernel functionsin the spatial and Fourier
domain, respectively. It is shown in [8] [10] that the most
general spatially periodic operator can be represented in the
Fourier domain as an operator with a kernel function of the
form

Ĝ(k, κ) =
∑
l∈Z

ĝl(k) δ(k − κ− Ωl), (2)

where ĝl(k), for eachk, can in general be a matrix. Such
a kernel function can be visualized in Figure 1. [8] also
describes how (2) can be written as

yθ = Gθ uθ, θ ∈ [0,Ω),

which for any givenθ has a (bi-infinite) matrix representation
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In this setting,Gθ is diagonal forspatially invariantopera-
tors, and Toeplitz forperiodic pure multiplicationoperators.

Example 1:A = ∂x and F (x) = cos(Ωx) have the
following representations

Aθ =

 . . .
jθ + jΩn

. . .

, F =
1
2


. . .

. . .

. . . 0 1

1 0
. . .

. . .
. . .

,
for every θ ∈ [0,Ω), respectively. Notice that we have
dropped theθ subscript inF , as it is independent of this
variable.

III. PROBLEM SETUP

Let us now consider a system of the form

∂t ψ(t, x) = Aψ(t, x) + B u(t, x)
=

(
Ao + Bo ε F Co

)
ψ(t, x) + B u(t, x), (4)

y(t, x) = C ψ(t, x),

wheret ∈ [0,∞) andx ∈ R with the following assumptions.
The (possibly unbounded) operatorsAo, Bo, Co are spatially
invariant, and the bounded operatorsB, C are spatially
periodic.F (x) = 2L cos(Ωx) with L a constant matrix, and
ε is a complex scalar.Ao, Bo, Co andE := BoF Co are all
defined on a dense domainD ⊂ L2(R) and are closed.u,
y, andψ are the spatio-temporal input, output, and state of
the system, respectively.

Then, as shown in [8] [10] and also briefly in the previous
section, the system (4) can be represented as in the Fourier
domain as follows.

∂t ψθ(t) =
(
Ao

θ + εBo
θ F Co

θ

)
ψθ(t) + Bθ uθ(t)

=
(
Ao

θ + ε Eθ

)
ψθ(t) + Bθ uθ(t), (5)

yθ(t) = Cθ ψθ(t),

θ ∈ [0,Ω), whereBθ andCθ have the form of the operator
in (3) and1

Ao
θ =

 . . .
A0(θn)

. . .

,

Bo
θ =

 . . .
Bo(θn)

. . .

, Co
θ =

 . . .
Co(θn)

. . .

,

Eθ := Bo
θ F Co

θ =


. . .

. . .

. . . 0 A−1(θn)

A1(θn) 0
. . .

. . .
. . .

, (6)

with θn := θ + Ωn, n ∈ Z, and

A1( · ) := Bo( · )LCo( · − Ω), (7)

A−1( · ) := Bo( · )LCo( · + Ω). (8)

We emphasize that the convention used in the representation
of Eθ in (6) is the same as that used in (3). For example the
nth row of Eθ is {· · · , 0, A1(θn), 0, A−1(θn), 0, · · · }.

Remark 1:We note that takingF (x) to be a pure cosine
is not restrictive. The results obtained here can be easily
extended to problems whereF (x) is any periodic function
with absolutely convergent Fourier series coefficients.

Remark 2:The system (4) can be considered as the LFT
(linear fractional transformation [11]) of the spatially peri-

1To avoid clutter, we henceforth drop the “ˆ” from all Fourier symbols.



Fig. 2. The LFT of a spatially periodic systemG and a spatially periodic
multiplication operatorεF .

odic systemG,

G =

 Ao B Bo

C 0 0
Co 0 0


and the (memoryless and bounded) spatially periodic pure
multiplication operatorεF (x) = ε2L cos(Ωx), see Figure 2.

IV. SPECTRAL & STABILITY ANALYSIS

It is shown in [8] that for a general spatially periodic
operatorA we have

Σ(A) =
⋃

θ∈[0,Ω)

Σ(Aθ). (9)

In the case whereA is spatially invariant (and thusAθ =
diag {· · · , A0(θn), · · · }), (9) further simplifies to

Σ(A) =
⋃
k∈R

Σp
(
A0(k)

)
. (10)

Example 2:Let A = −(∂2
x + κ2)2. Then A0(k) =

−(k2 − κ2)2, see Figure 3 (above). SinceA0( · ) is scalar,
Σp

(
A0(k)

)
= A0(k) for everyk. It is easy to see thatA0( · )

takes every real negative value and thus from (10)A has
continuous spectrumΣ(A) = (−∞, 0 ], see Figure 3 (center).

Remark 3:WhenA is spatially invariant, a helpful way to
think aboutΣ(A) in terms of its symbolA0 is suggested by
the previous example. First plotΣp

(
A0( · )

)
in the ‘complex-

plane× spatial-frequency’ space, as in Figure 3 (above) of
Example 2. Then the orthogonal projection onto the complex
plane of this plot would giveΣ(A). This can be considered as
a geometric interpretation of (10). In Example 2, sinceA0( · )
is real scalar and takes only negative values, this projection
yields only the negative real axis. But in general ifA0( · ) ∈
Cq×q, this projection would lead toq curves in the complex
plane.

Notice also that in this setting,Σ(Aθ) is the projection
onto the complex plane of samples ofΣp

(
A0( · )

)
taken

at k = θ + Ωn, n ∈ Z, in the ‘complex-plane× spatial-
frequency’ space. Asθ varies in [0,Ω), these projections
trace outΣ(A) in the complex plane. This can be considered
as a geometric interpretation of (9). Figure 3 (below) shows
the said samples in the ‘complex-plane× spatial-frequency’
space for a scalarA.

We next introduce a special subclass ofholomorphic(or
analytic) semigroups. The reader is referred to [4]–[6] for

Fig. 3. Above: Representation of the symbolA0( · ) of Example 2 in
‘complex-plane× spatial-frequency’ space. Center:Σ(A) in the complex
plane. Below: For spatially invariantA, the (diagonal) elements ofAθ are
samples of the Fourier symbolA0( · ).

a detailed discussion. SupposeA is densely defined,ρ(A)
contains a sector of the complex plane| arg(z−α) | ≤ π

2 +γ,
γ > 0, α ∈ R, and there exits someM > 0 such that

‖(zI−A)−1‖ ≤ M

|z − α|
for | arg(z−α) | ≤ π

2
+γ. (11)

ThenA generates a holomorphic semigroup and we write
A ∈ H (γ, α,M) [6] [4]. We say thatA is sectorial if A
belongs to someH (γ, α,M).

Finally, a semigroup is called exponentially stable if there
exist positive constantsM and% such that [7]

‖eAt‖ ≤Me−%t for t ≥ 0.

Theorem 1:Assume thatA is sectorial. Then ifΣ(A) ⊂
C−, A generates an exponentially stable semigroup.

Proof: If A is sectorial it defines a holomorphic
semigroup, and thuseAt is differentiable fort > 0 [5]. Then
[3] shows that this is sufficient for the spectrum-determined
growth condition to hold. In particular, ifΣ(A) ⊂ C−, A
generates an exponentially stable semigroup.



V. STABILITY AND THE SPECTRUM-DETERMINED

GROWTH CONDITION

In the literature on semigroups, there exist examples in
which Σ(A) lies entirely insideC−, but ‖eAt‖ does not
decay exponetially. See [1] and more recently [2]. In such
cases it is said that the semigroup does not satisfy the
spectrum-determined growth condition[3]. The determining
factor in the examples presented in [1] and [2] can be
interpreted as the accumulation of the eigenvalues ofAθ

around±j∞ in the form of Jordan blocks of ever-increasing
size (i.e. as the eigenvalues tend to±j∞ their algebraic
multiplicity increases while their geometric multiplicity stays
equal to one). But such cases are ruled out when one
deals with holomorphic semigroups, which is the reason we
consider these semigroups in Theorem 1.

Our ultimate aim in this section is to verify exponential
stability. By Theorem 1, in order to prove exponential stabil-
ity of a holomorphic semigroup with infinitesimal generator
A, it is sufficient to show thatΣ(A) ⊂ C−. Hence, in the first
part of this section, we give conditions under which theA
operators described by (4) do indeed generate holomorphic
semigroups. In the second part, we find sufficient conditions
which guaranteeΣ(A) ⊂ C−.

Once again, the setup is that of (4). In addition assume
thatA0(k) ∈ Cq×q is diagonalizable for everyk ∈ R.

Conditions for SectorialA

To find conditions under whichA in (4) will define a
holomorphic semigroup we again use perturbation theory.
We first find conditions under whichAo is sectorial. We then
show thatA = Ao + εE remains sectorial ifE is ‘weaker’
thanAo in a certain sense we will describe and ifε is small
enough.

In the next theorem we present a condition for a spatially
invariantAo with symbolA0(k) to be sectorial.

Theorem 2:Let A0(k) be diagonalizable for everyk ∈
R, and let U(k) be the transformation that diagonal-
izes A0(k), A0(k) = U(k) Λ(k)U−1(k). Let κ(k) :=
‖U(k)‖ ‖U−1(k)‖ denote the condition number ofU(k). If
supk∈R κ(k) <∞, and for everyk ∈ R, ρ

(
A0(k)

)
contains

a sector of the complex plane| arg(z−α) | < π
2 + γ, γ > 0

andα ∈ R both independent ofk, thenAo is sectorial.
Proof: See Appendix.

This theorem has a particularly simple interpretation when
A0( · ) is scalar. In this caseκ

(
U(k)

)
= 1 for all k ∈ R. Now

sinceA0( · ) traces a curve in the complex plane, by Theorem
(2) if this curve stays outside some sector| arg(z − α) | ≤
π
2 + γ, γ > 0, of the complex plane thenAo is sectorial.

The following theorem is from [6]. It uses the notion of
relative boundednessof one unbounded operator with respect
to another unbounded operator [4].

Theorem 3:SupposeAo ∈ H (γ, α,M) and E =
BoF Co is relatively bounded with respect toAo so that

‖E ψ‖ ≤ a ‖ψ‖ + b ‖Aoψ‖, ψ ∈ D , (12)

with 0 ≤ a < ∞ and 0 ≤ b |ε| < 1/(1 + M). ThenA =
Ao + εE is a sectorial operator.

This theorem says that ifAo is sectorial, then so isA =
Ao+εE if E is weaker thanAo in the sense of (12) and if|ε|
is small enough. Notice that at this point, condition (12) can
not be reduced to a condition in terms of Fourier symbols
(i.e. a condition that can be checked pointwise ink) as in
Theorem 2. This is becauseE is not spatially invariant. But
once the exact form of the operatorsBo andCo is known,
(12) can be simplified to a condition on the symbols ofAo,
Bo andCo. Let us clarify this statement with the aid of an
example.

Example 3:Consider the periodic PDE

∂t ψ = −(∂2
x + κ2)2 ψ − c ψ + ε ∂x cos(Ωx)ψ + u

y = ψ.

It is easy to see thatAo = −(∂2
x + κ2)2 − c, Bo = ∂x and

Co = δ(x) (the identity convolution operator). By formal
differentiation we have

E ψ = ∂x cos(Ωx)ψ = −Ω sin(Ωx)ψ + cos(Ωx) ∂x ψ.

Using the triangle inequality and‖ sin(Ωx)‖ =
‖ cos(Ωx)‖ = 1 we have

‖E ψ‖ ≤ |Ω| ‖ψ‖ + ‖∂x ψ‖. (13)

Thus we have effectively ‘commuted out’ the (bounded)
spatially periodic operator inE, and are left with only
spatially invariant operators on the right of (13). Hence, after
applying a Fourier transfomation to the right side of (13), a
sufficient condition for (12) to hold is that

|Ω| + |k| ≤ a + b |(k2 − κ2)2 + c|, k ∈ R,

which can be shown to be satisfied for large enougha > |Ω|
andb > 0.

Remark 4:The above example makes clear the notion of
E being ‘weaker’ thanAo that we mentioned at the beginning
of this subsection. If in Example 3 we hadBo = ∂ν

x and
Co = ∂µ

x andν + µ = 5, thenE would contain a5th order
derivative, whereas the highest order of∂x in Ao is 4. This
would mean that (12) can not be satisfied for any choice of
a andb.

Conditions forΣ(A) ⊂ C−

The final step in establishing exponential stability is to
show thatΣ(A) ⊂ C−. Unfortunately it is in general difficult
to find the spectrum of an infinite-dimensional operator.
Thus we proceed as follows. We consider the block-diagonal
operatorsAo

θ, θ ∈ [0,Ω). This allows us to extend Geršgorin-
type methods (existing for finite-dimensional matrices) to
find bounds on the location ofΣ(Aθ), Aθ = Ao

θ + ε Eθ. This
in turn we use to find conditions under whichΣ(Aθ) ⊂ C−,
and thusΣ(A) ⊂ C−.

In locating the spectrum of a finite-dimensional matrix
T ∈ Cq×q, the theory of Geřsgorin circles [12] provides
us with a region of the complex plane that contains the
eigenvalues ofT . This region is composed of the union ofq
disks, the centers of which are the diagonal elements ofT ,
and their radii depend on the magnitude of the off-diagonal



elements [12]. This theory has also been extended to the case
of finite-dimensional block matrices (i.e., matrices whose
elements are themselves matrices) in [13]. Next, we further
extend this theory to include bi-infinite (block) matricesAθ.

For every k ∈ R, take Bk to be the set of complex
numbersz that satisfy

σmin
(
zI −A0(k)

)
≤ |ε|

(
‖A−1(k)‖+ ‖A1(k)‖

)
, (14)

whereσmin
(
zI −A0(k)

)
denotes the smallest singular value

of the matrixzI −A0(k).
Lemma 4:For everyθ, the spectrum ofAθ = Ao

θ + ε Eθ

is contained in the set

Sθ =
⋃
n∈Z

Bθn
.

Proof: See Appendix.
Example 4:Let us consider the periodic PDE [8]

∂t ψ = −(∂2
x + κ2)2 ψ − c ψ + ε cos(Ωx) ∂x ψ + u

y = ψ. (15)

Comparing (15) and (4) we have

A0(k) = −(k2 − κ2)2 − c, Bo(k) = 1, Co(k) = jk,

B(k) = 1, C(k) = 1, L =
1
2
.

From (7)–(8),A1(k) = j
2 (k−Ω), A−1(k) = j

2 (k+ Ω), and
thus ‖A−1(k)‖ + ‖A1(k)‖ = 1

2 (|k − Ω| + |k + Ω|). Hence
(14) leads to

σmin
(
zI −A0(k)

)
= |zI −A0(k)| ≤

|ε|
2

(|k − Ω|+ |k + Ω|)

=
{

Ω |ε| |k| ≤ Ω
|k| |ε| |k| ≥ Ω ,

which means that the setSθ is composed of the union of
disks with centers atA0(θn) and radii |ε|2 (|θn−Ω|+|θn+Ω|).
Figure 4 (above & center) showSθ in the complex-plane×
spatial-frequency space and inC respectively.2

Remark 5:The set

Σε(M) := {z ∈ C | σmin(zI −M) ≤ ε} (16)

≡ {z ∈ C | ‖(zI −M)ϕ‖ ≤ ε for some‖ϕ‖ = 1}
≡ {z ∈ C | z ∈ Σp(M + Z) for some‖Z‖ ≤ ε}

is called theε-pseudospectrumof the matrixM [14]. Clearly
Σε′(M) ⊆ Σε(M) if ε′ ≤ ε, and Σε(M) = Σp(M)
for ε = 0. The pseudospectrum is composed of small
sets around the eigenvalues ofM . For instance ifM has
simple eigenvalues, then for small enough values ofε the
pseudospectrum consists of disjoint compact and convex
neighborhoods of each eigenvalue [15]. Thus for everyk ∈
R, (14) defines a closed region ofC that includes the
eigenvalues ofA0(k). Moreover, comparing (16) and the

2We would like to point out that Figure 4 (above) is technically incorrect;
once the spatially invariant system is perturbed by a spatially periodic
perturbation it is no longer spatially invariant and thus can not be fully
represented by a Fourier symbol. Hence its spectrum can no longer be
demonstrated in the complex-plane× spatial-frequency space.

Fig. 4. Above: TheBθn regions viewed in the ‘complex-plane× spatial-
frequency’ space (the disks are parallel to the complex plane). Center:
Σ(Aθ) is contained inside the union of the regionsBθn . Below: The bold
line showsΣ(Ao) and the dotted region containsΣ(A), A = Ao + εE.

definition of Bk in (14) and we haveBk = Σε

(
A0(k)

)
,

ε = |ε|
(
‖A−1(k)‖+ ‖A1(k)‖

)
.

We now employ Lemma 4 to determine whetherΣ(A)
resides completely insideC−, as needed to assess system
stability.

TakeDε to be the closed disk of radiusε and center at the
origin, andBk to be the region described by (14). Define the
sum of sets byU1+U2 = {z | z = z1+z2, z1 ∈ U1, z1 ∈ U1}.
Also, for everyk ∈ R let λmax(k) represent the eigenvalue of
A0(k) with the maximum real part, and letκ(k) be defined
as in Theorem 2.

Theorem 5:For every k, Bk is contained inside
Σp(A0(k)) + Dr(k) with

r(k) := |ε|
(
‖A−1(k)‖+ ‖A1(k)‖

)
κ(k).

In particular, ifΣ(Ao) ⊂ C− and

r(k) <
∣∣Re

(
λmax(k)

)∣∣ + β (17)

for every k ∈ R and someβ < 0 independent ofk, then
Σ(A) ⊂ C−.

Proof: See Appendix.
Example 5:Once again we use the scalar system of

Example 4.κ(k) = 1 sinceA0(k) is scalar,|Re
(
λmax(k)

)
| =

|(k2 − κ2)2 + c|, and

‖A−1(k)‖+ ‖A1(k)‖ =
1
2

(|k − Ω|+ |k + Ω|).



Thus condition (17) becomes

|ε|
2

(|k − Ω|+ |k + Ω|) < |(k2 − κ2)2 + c|+ β.

If this condition is satisfied for someβ < 0, the dotted
region in Figure 4 (below) will remain insideC− and thus
Σ(A) ⊂ C−.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we study the problem of exponential stability
for a class of spatially periodic systems. We do this by (i)
finding conditions under which theA-operator is sectorial
(i.e., generates a holomorphic semigroup) and thus satisfies
the spectrum-determined growth condition, and (ii) deriving
conditions which guarantee thatA has open LHP spectrum.

Future work in this direction would include extending this
procedure to larger classes of semigroups which also satisfy
the spectrum-determined growth condition.

VII. A PPENDIX

Proof of Theorem 2

It is shown in [16] that a sufficient condition forAo to be
sectorial is thatρ(Ao) contain some right half plane{z ∈
C |Re(z) ≥ µ}, and

‖z(zI −Ao)−1‖ ≤M for Re(z) ≥ µ,

for someµ ≥ 0 andM ≥ 1.
Now sinceA0(k) ∈ Cq×q has simple eigenvalues for

every k, there exists a matrixU(k) such thatA0(k) =
U(k) Λ(k)U−1(k) with Λ(k) a diagonal matrix with ele-
mentsλi(k) := λi

(
A0(k)

)
, i = 1, · · · , q. Thus we have

‖z(zI −Ao)−1‖ ≤ sup
k∈R

(
‖z

(
zI −A0(k)

)−1‖
)

≤ sup
k∈R

(
‖U(k)‖ ‖U−1(k)‖

‖z
(
zI − Λ(k)

)−1‖
)

= sup
k∈R

(
κ(k)

|z|
dist[z,Σp

(
A0(k)

)
]

)
≤ κmax sup

k∈R

( |z|
dist[z,Σp

(
A0(k)

)
]

)
,

whereκmax := supk∈R κ(k).
Let us now chooseM ′ = (1 + κmax)M , M > 1, and

consider for a givenk the region of the complex plane where

κmax
|z|

dist[z,Σp
(
A0(k)

)
]
≥ M ′.

This region (which contains the eigenvaluesλi(k)) is con-
tained inside the union of the circles

κmax
|z|

|z − λi(k)|
≥ M ′, i = 1, · · · , q,

which are themselves contained inside the larger circles

|z − λi(k)| ≤
|λi(k)|
M

, i = 1, · · · , q. (A1)

Notice that (A1) describes circles whose radii increase like
|λi(k)|/M , M > 1, as their centersλi(k) become distant
from the origin. Clearly a sufficient condition for these circles
to belong to some open half plane{z ∈ C |Re(z) < µ} for
all k ∈ R and large enoughM is that Σp

(
A0(k)

)
, k ∈ R,

reside outside some sector| arg(z−α) | ≤ π
2 + γ, γ > 0, of

the complex plane.
Finally, if the circles (A1) are contained in some open

half plane{z ∈ C |Re(z) < µ} for all k ∈ R, then for
Re(z) ≥ µ, z ∈ ρ(A0(k)) and we have

κmax sup
k∈R

( |z|
dist[z,Σp

(
A0(k)

)
]

)
≤ M

and thus‖z(zI −Ao)−1‖ ≤M for Re(z) ≥ µ.

Proof of Lemma 4

We useΠN T ΠN to denote the(2N + 1) × (2N + 1)
truncation of an operatorT on `2, whereΠN is the projection
defined by

diag
{
· · · , 0, I, · · · , I︸ ︷︷ ︸

2N+1 times

, 0, · · ·
}
.

where I is the q × q identity matrix. We form the finite-
dimensional matrixΠN Aθ ΠN

∣∣
ΠN `2

with pure point spec-
trum. Then using a generalized form of the Geršgorin Circle
Theorem [13] for finite-dimensional (block) matrices, we
conclude that

Σ
(
ΠN Aθ ΠN

∣∣
ΠN `2

)
⊂

⋃
|n|≤N

Bθn
⊆

⋃
n∈Z

Bθn

whereBθn
are regions ofC defined by (14). Since this holds

for all N ≥ 0, we haveΣ(Aθ) ⊂ Sθ.

Proof of Theorem 5

If U(k) diagonalizesA0(k), A0(k) = U(k) Λ(k)U−1(k),
andκ(k) = ‖U(k)‖ ‖U−1(k)‖ denotes its condition number,
then from [17] the pseudospectrum ofA0(k) satisfies

Σp(A0(k)) + Dε ⊆ Σε(A0(k)) ⊆ Σp(A0(k)) + Dεκ(k)

(A2)
for all ε ≥ 0. Thus the first statement follows immediately
from (A2) andBk = Σε

(
A0(k)

)
with ε = |ε|

(
‖A−1(k)‖+

‖A1(k)‖
)
. To prove the second statement, letC−

β denote all
complex numbers with real part less thanβ ∈ R. It follows
from Σ(Ao) ⊂ C− that Σ(Ao

θ) ⊂ C− for every θ. If (17)
holds then

Bθn
⊆ Σp(A0(θn)) + Dr(θn) ⊂ C−

β

for everyn ∈ Z, and from Lemma 4 we haveΣ(Aθ) ⊂ Sθ ⊂
C−

β′ for someβ < β′ < 0 and everyθ. ThusΣ(A) ⊂ C−.
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